CALCULATION OF THE CHARACTERISTICS
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The dependence of the radiated power on the characteristics of optical cavities in the case
of flow systems has been investigated in a number of papers [1-3], in which it is assumed
that population inversion of the laser levels is obtained until entry into the cavity. The op-
eration of a cavity is analyzed in [1] in the geometric-optical approximation with allowance
for vibrational relaxation in the gas flow. A simplified system of relaxation equations is
solved under steady-state lasing conditions and an expression derived for the laser output
power on the assumption of constant temperature, density, and flow speed. The vibrational
relaxation processes in the cavity itself are ignored in [2, 3]. It is shown in those studies
that the solution has a singularity at the cavity input within the context of the model used. In
the present article the performance characteristics of a COy~N,~He gas-~dynamic laser with
a plane cavity are calculated. A set of equations describing the processes in the cavity is
analyzed and solved numerically, Population inversion of the CO, laser levels is created by
pre-expansion of the given mixture through a flat hyperbolic nozzle. The dependence of the
output power on the reflectivities of the mirrors, the cavity length, the pressure, and the
composition of the active gas medium is determined.

1, Consider an adiabatic one-dimensional flow of a CO,—N,—He mixture through a flat hyperbolic -
nozzle having a special configuration such that it terminates in a plane-parallel channel. The mixture,
expanded through the nozzle, enters the interior of a Fabry—Perot cavity, '

It may be inferred on the basis of our calculations [4] of the population inversion of CO, molecules
in expanded gas flows for anaxisymmetricalnozzle that the main processes governing collisional relaxation
in the CO,—N,—He mixture are the following:

K

CO, (00°1) + M:;: CO, (11:0) + M + Ae, @.1)

Ky
GO (00°4) + Na (0) == €0, (00°0) + Ny () + Aey (1.2)
€O, (01:0) + M = €0, (00°0) + M + Aey 1.3)

Here M is any one of the CO,, N, or He particles, A&y, is the heat of the m~th reaction (m=1, 2, 3),

K= JPOZMa™, pW s the probability of the deactivation or exchange of lower-level quanta in the m—th

n

reaction in one collision of a CO, molecule with the n-th particle, Z(n) is the collision frequency of CO,
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molecules with molecules of species n per unit concentration, and o ®) = N()/N is the molar fraction of the
n-th component of the mixture, The subscripts n=1, 2, 3 refer o the respective molecules CO,, N,, and
He.

We follow the procedure developed in [5], i.e., assume that both during expansion and in the cavity
local thermodynamic equilibrium exists within the vibrational degrees of freedom of the CO, and N, mol-
ecules, so that we can associate with each vibrational mode a vibrational temperature Tj(i=1,.., 4). The
values of i=1, 2, 3 refer to the three modes of CO,, and i=4 to the vibrational motion of the N, molecule.
It may be assumed with acceptable error that the vibrational temperatures T, and T, are equal,

The mass, momentum, and energy conservation equations, the equations of state, and the relaxation
equations for one-dimensional steady-state flow of an ideal gas up to entry into the cavity have the form

4) pu = Aypyuy 44

pudh L 9P _g (1.5)
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Here p, u, T, p, and A are the density, velocity, temperature, pressure, and cross-sectional area of

the nozzle, m = Na®m,; m, is the mass of the n-th species of molecule, E; is the vibrational energy of
. - )

the i~th vibrational degree of freedom per gas particle, and k is the Boltzmann constant. The values of the
variables in the critical section of the nozzle are indicated by an asterisk.

The relaxation equations (1.8)-(1.10) are written in the variables y;= exp(—hvi/ kT;), where hyj is
the vibrational quantum energy of the i-th mode. We have assumed in writing Eqs. (1.8)-(1.10) that the
density of CO, molecules in a vibrational state (m, n, p) is described by the conventional relation given in

[6]:

NO (m, n, p) = NO 3™ (1 —yplle + 1) 35" (1 — y2)*] [y (1—p,)] (1.11)

and relaxation of the vibrational temperatues is realized only through collisions., Spontaneous transitions
can be neglected, because the radiation lifetimes of the levels far exceed the characteristic transit times
of the gas through the system.

The energy of the vibrational degrees of freedom have the following form for a hypothetical harmonic
oscillator model:

by, , 2hveys 1,12
E,--«i_yi ((=1,34), Hy=00 1.12)

The probabilities of the processes (1.1)-(1.3) are evaluated the same as in [4].

2. The mixture, expanded through the nozzle, enters a plane-parallel cavity, whose z axis is per-
pendicular to the direction of gas flow. The mirrors of the cavity are located at the points z=0 and z= L.
The reflectivities of the mirrors are equal to
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n=1—a'—1t, rn=1—a,—t (2.1)

where a; and a, are the loss coefficients due to energy dissipation and t, and t, are the transmissivities of
the first and second mirrors, respectively.

For a steady flow of gas through the cavity the conservation equations for the mass (1.4) and momen-
tum (1.5) and the equation of state (1.7) remain the same as during expansion through the nozzle, With
allowance for the emission of radiation and dissipation at the mirrors the energy equation assumes the
form ~

LTS 1 .
ﬂﬂ}- £ [-2_ ET + (0 +a®) kT + a(l)%Ei + 0OE, + o muz} -6 2.2)

Here G is the energy lost per cubic centimeter of gas per second, Under steady-state lasing con~
ditions,
¢={x1av 2.3)

where K;, is the optical gain of the medium and I, is the spectral intensity of the emitted radiation, Since
the gain scarcely changes over the width of the laser line, the expression for G is written in the form

G=K,l 2.4)

where Ky, is the géin at the center of the line and I is the total radiation intensity,

The relaxation eéquations have the following form in the cavity with allowance for stimulated transi-
tions:

P S e o el LS 2.5)
dz 1Ty 1T Ldp+y2 peN®
dys 1 - K, I
& =0 v e (2.6)
dy4 . .
Tz s (2.7)

Here the functions ¢y, ¢,, and ¢; represent the right-hand sides of the respective equations (1.8), (1.9),
and (1.10).

To close the system (1.4), (1.5), (1.7), (2.2), (2.5)-(2.7) we require one more équation. The required
equation is given by the steady-lasing condition obtained in [1]:

_MZI:K,,TO =— (ryrs) (2.8)

which is a consequence of the equality of the radiation loss and gain in two-way transit through the cavity.

3. The optical gain Ky of the medium is defined as follows, according to [7}:

where I" and I~ are the light flux intensities in the positive and negative z directions,

According to [8], the expression for K, may be written in the form

K,

A (In 2)s Av (In 2y (v —"vo) (In 2)"/ ') 3.2)

= TSnviAv (g — ny) U ( AV ' AV

Here A is the Einstein coefficient for spontaneous emission, ¢ is the speed of light, v, is the transition
frequency at the center of the line, AV and AV’ are the collisional and Doppler half-widths of the line, n,
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and n; are the population of the upper and lower laser levels respectively, and U is the Voigt function,

The density of molecules ny(J) at the vibrational-rotational level at equilibrium of the rotational and
translation degrees of freedom is

1, () = 1,22 (2] + 1) exp [- MBI+ 1) | 3.3)

where ny is the total population of the vibrational level, J is the rotational quantum number, h is the Planck
constant, and B is the rotational constant,

The transition lines of the P-branch (AJ=—1) corresponding to values of J, maximizing (3.3) are the
most intense,

¥or a gas mixture the collisional half-width of the line is given by the relation
Av = %%N Mgy, ™ (3.4)

in which 0@ is the cross section for line broadening by molecules of the n-th species and v® ig the rela-
tive velocity of CO, molecules and molecules of the n-th species. The values of o(®) for COy, Ny, and He
molecules may be found in [9, 10].

The expression for the Doppler half-width of the line has the form

AV = % [ﬂz_' In z] g (3.5)

where A is the wavelength of the transition in question.
4, One of the most important characteristics to be determined is the radiated power P from thecav-
ity. If W and H are the dimensions of the cavity in the x and y directions, we have

Xo+ W
P= S IHdz 4.1)

o

Here ¥t is the output radiation intensity from the cavity:
L=T+(L)t, + I7 (0) 1, 4.2)

where I" (L) and I"(0) are the intensity values af z=1L, 0.

The following relations hold in a steady-state radiation field:

@ IO

T_—(LTFZ —7_—(—()—)—7‘1:1 ‘ (4.3)

Noting that the number of stimulated transitions per cubic centimeter per unit time can be written
in the form
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0 .
and taking (3.1) and (4.3) into account, we obtain
, s
I, =K, IL{1 — ~ a - az (1 [ 7o)
t ’ { [1— (e} /2] {1 4/ )" } (4.5)

The expression for the radiated power from the cavity has the final form

X+ W

P=LH K, {1 — a1+ aa(r1/ )" .
S ' { [1—(r1r2)‘/11[1+(n/m)"21}d’” (4.6)

o

5. We solved numerically the system (1.4)-(1.10) describing the expansion of the CO,—N,—He mix-
ture for a flat hyperbolic nozzle with an area ratio described by the formula

AJA,=VIT & (5.1)

in which b=h/2 tané (h is the height of the exit slot, and 6is the asymptotic expansion half-angle of the noz-
zle). The calculations were carried out for a nozzle with h=0.1 cm and 0=15°, It follows from our earlier
work [4] that for the important case of large densities the motion may be regarded as equilibrium flow up
to the critical point. The equilibrium flow equations are easily integrated and the equilibrium value thereby
obtained for the volumetric flow of gas through the nozzle. The use of the subcritical equilibrium solution
greatly simplifies the problem and shortens the computation time for one set of conditions ("variant").

The distributions of the inverted populations along the nozzle are given for the most significant re-
gimes in Fig.1, in which the.quantity é=[N(00°1)~—N(10°0)] - 1015 is plotted on the vertical axis. Curves 1,
2, and 3 refer to variants with the following initial condmons

Py =15 atm, T,=2000°K 10% CO, — 40% N, — 50% He (5.2)
Py =30 atm, T,=2000°K, 5% CO,— 45% N, — 50% He (5.3)
P, = 60 atm,’ T, = 2000° K, 2.5% CO, — 47.5% N, — 50% Ho 6.4

Note that in all variants the absolute number of 002 particles at the entry point is constant.

1t follows from Fig.1 that at higher pressures population inversion takes place earlier along the noz-
zle due to the increased content of He and, hence, the faster relaxation of the lower laser level,

A difficulty arises in the solution of the system (1.4), (1.5), (1.7), (2.2), (2.5)-(2.8) describing the flow
of relaxing gas through the cavity in connection with the fact that for predetermined reflectivities r; and
1, Eq. (2.8), generally speaking, does not holder under arbitrary conditions at the cavity input. If was as-
sumed in [1] for this reason that the populations of the laser levels suffer a discontinuity at the cavity input
while all the other variables remain constant.

To remove the discontinuity of the populations at the cavity input we carried out the calculations in
the present study for a variable reflectivity ry(x) specified by a certain function that increases with the
length ! and then assumes (for x—x;=1) a constant value r'{ .
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When the values of Ty, T, u, and p are given at the input, Eq. (2.8) is valid only beginning with a cer-
tain value rj at a distance I, from the cavity input. For x—x; =, Eq. (2.8) is not used; a steady-state
intensity cannot be realized, because in this interval the losses exceed the gain., For x—x,Z I; the simul-
taneous solution of Egs. (2.5)~(2.8) gives the function I(x). It is important to realize the implication of
Eqgs. (2.5)-(2.8) that I(x) is a discontinuous function at the point x=x;+1;, where its value depends on the
form of the function ry(x).

The length I of the variable-reflectivity interval was assumed to be equal in order of magnitude to
the diffraction length, We carried out the calculations for several functions r,ix) and several values of ..
For small I in comparison with the characteristic relaxation lengths the mode of specification of the func-
tion ry(x) and the choice of I have virtually no influence on the power value,

The dependence of the radiated power on the cavity length along the x axis is given in Fig., 2. The
calculations refer to values of L=50 em, r;=1, rj =0.9, and a,=0.01. Curves 1, 2, and 3 correspond to
conditons (5.2)-(5.4), respectively, The initial increase of the radiated output power is attributed to a
rapid exchange of quanta with nitrogen. The subsequent relatively slow growth ofthepower is due fo the
slow temperature relaxation of the lower laser level to the translation temperature of the mixture, This
fact is evinced by Fig. 3, which shows the behavior of the vibrational and translational temperature inthe
direction of flow along the cavity for the initial data (5.2). The behavior of the temperature for the other
initial data are qualitatively similar.

The dependence of the radiated laser power on the flow stagnation pressure under the condition of
an invariant absolute number of CO, particles is given in Fig. 4. For sufficiently low pressures the output
power egsentially increases directly as the pressure. At pressures of ~ 60 atm, however, the power
growth slows down, a result that is attributed to rapid collisional relaxation of the upper laser level,

Curves showing the dependence of the radiated output power on r; and L are given in Figs. 5 and 6.
The calculations refer to variant (5.2). We see from Fig. 5 that an optimum reflectivity exists, which is
roughly equal to 0.9 for this case. The existence of an optimum reflectivity is explained by the fact that
as r; is increased the radiation intensity in the laser cavity increases onthe one hand, while the fraction
of emitted radiation decreases on the other. Figure 6 illustrates the dependence of the output power on
the length of the laser cavity. Under the given conditions Iasing takes place only for a cavity length L =10
cm.,

The foregoing calculations show that the allowance for collisional relaxation can prove significant
in the estimation of radiated output power. A large content of N, in the mixture is the most favorable for
the generation of large powers. At pressures above ~ 60 atm, however, the power growth slows down due
to the rapid collisional relaxation of CO,. This consideration renders it impractical to further increase
the pressure under the stated conditions.,
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